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This paper deals with a real-time and optimal control of dynamic systems while also considers the constraints which these
systems might be subject to. Main objective of this work is to propose a simple modification of the existing Model Predictive
Control approach to better suit needs of computational resource-constrained real-time systems. An example using model of
a mechanical system is presented and the performance of the proposed method is evaluated in a simulated environment.
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1 Introduction

Automatic control plays important role in both in-
dustrial and commercial engineering applications. Most
of these applications, nowadays, use digital computers in
forms ranging from low-power single-chip controllers up
to powerful personal computers with several processing
cores. Limit in computing power of computers used in
engineering applications, such as dynamic systems con-
trol, induces constraints on design of the control algo-
rithms these computers can run. The constraints caused
by limitations in real computer system is especially nec-
essary to take into account when designing real-time ap-
plication, like automatic control of mechanical systems.
In real-time computer systems each task must respond to
events within specified deadlines to avoid failure.

In traditional control design, which are usually de-
signed using linear input/output models, on hard real-
time computer system each task implementing a digi-
tal controller has its deadlines defined by period of ex-
ecution and measured or calculated worst-case execu-
tion time (WCET). In simple designs these limitations
of real computer system either do not constitute signifi-
cant constraints on the design of the digital controller, or
it is possible to incorporate portion of these limitations
(eg communication and computational delay) into model
of the controlled dynamic system [1].

In some cases a requirement may arise to use more
advanced optimal control algorithms, such as Model Pre-
dictive Control, to achieve optimality and better control
performance. Different methods used to design such con-
troller can be found in the automatic control textbooks
[1, 2]. In this case limitations of the real computer system
may pose significant constraints on designed controller.
One of the most critical of them, especially when real-
time systems are of concern, may be the computational

complexity. This issue can be addressed by different ap-
proaches, one of such method is introduced in [3] and
[4]. In [4] is presented optimal control and scheduling de-
signed on constrained computer system using both on-
line and off-line technique. In this work author advocates
usage of the H2 norm and periodic control theory to de-
sign off-line periodic controller for resource constrained
computer system. Also an on-line approach for improving
performance of the off-line control and resource sched-
ule, called Optimal Pointer Placement , is presented in
this work. Interesting approaches can also be found in
the literature dealing with the networked control systems
(NCS), two main approaches oriented towards achieving
resource utilization reduction (to save computation and
communication resources) can be distinguished, namely,
Event-Triggered Control (ETC) and Self-Triggered Con-
trol (STC) [5, 6]. The control law in ETC and STC con-
sists of a feedback controller that computes the control
signals, and a triggering mechanism that determines when
the control signals have to be updated. The difference be-
tween ETC and STC is that in the former the control
update is triggered by specific condition which is con-
tinuously being checked and when it becomes true, the
control signals are recalculated, while in the latter the
next update time is determined at current update time.
The paper [5] introduces a general framework for the self-
triggered MPC strategy applying to discrete-time nonlin-
ear systems subject to state and input constraints and
possibly a non-quadratic cost function. The framework
proposed in [5] also provides a priori closed-loop perfor-
mance guarantees in terms of original cost function apart
form asymptotic stability and constraint satisfaction. If
the messages in the communication network under con-
sideration provide high space for useful data (payload),
another mechanism to reduce utilization of communica-
tion resources (without resorting to sporadically chang-
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ing control signals) is at hand – ie packet-based predictive
control. This approach exploits predictive nature of some
control methods (eg MPC) to include predicted control
signals into otherwise unused parts of the network mes-
sage, in other words, a sequence of future control signals
is transmitted through the network at each update time
instead of single control signal [7]. There are also works
in existence, which combine the ideas of the ETC and
packet-based predictive control [8, 9, 10]. In [8] an event-
triggered MPC setup for unconstrained systems was pre-
sented using input-to-state stability notions as basis, later
extension of this work [9] proposed ETC schemes for con-
strained discrete time systems. Especially noteworthy is
the fact that this extension utilizes optimal control se-
quences produced by MPC optimization problem in an
open-loop manner between update times.

In this paper, an event-triggered control method is pro-
posed, which aims at reducing computational complexity
by further exploiting dynamic properties of the controlled
system and known design parameters, effectively also re-
ducing the complexity of design process when compared
to some other predictive event-driven control strategies.
Proposed method introduces modified control algorithm,
which achieves specified goal, and a method for quan-
tifying state divergence of two similar state-space mod-
els using preexistent design parameters. This approach
yields an event-based event-triggered predictive optimal
control method which reduces the need to solve optimiza-
tion problem at each sampling period.

The following notations are used throughout this pa-
per. The set of all real numbers R can be divided into its
subsets by the notation shown below. Similar notation as
for real numbers R can be used for other number sets
eg integers Z and natural numbers N . Using this nota-
tion, the set of all positive real numbers and zero can be
denoted as R≥0 . The set of natural numbers is defined as
Z≥0 = N .

R�a = {x ∈ R : x�a} ∀a ∈ R,� ∈ {>,<,≥,≤} . (1)

2 Problem formulation

State-space mathematical models comprised of first
order vector difference equations, suitable for designing
advanced control methods [2],

x(k + 1) = Ax(k) +Bu(k) , (2)

are considered in this paper. In (2) k ∈ N is number of
the sample and corresponds to the time kTS , TS is a
sampling period, x(k) ∈ R

n is a vector of discrete-time
internal states, u(k) ∈ R

m is a vector of discrete-time

control inputs, and A ∈ R
n×n , B ∈ R

n×m are matrices
which specify the dynamic properties and behavior of the
discrete-time model of a plant.

2.1 Model predictive control

The control strategy known as Model Predictive Con-
trol (MPC) orReceding Horizon Control (RHC) and Mov-
ing Horizon Optimal Controlis a modern approach in con-
trol and aims at transformation of the control problem
into an optimization one [11], which enables the opti-
mization of the controlled plant behavior over control-
lable plant inputs u(k) and predicted evolution of the
plant state x̂(k + i|k).

Prediction of the plant state is obtained by utilizing an
explicit numerical model of the controlled plant. There-
fore the model is the essential element of an MPC con-
troller. In the real world, the model is always imperfect
estimation of the physical plant, thus the plant state fore-
cast is never completely accurate. This inaccuracy can be
partially overcome by implementing feedback from the
output of the plant, [12].

k k+1 k+Npk N+ m

past future

control horizon

prediction horizon

predicted states x̂

predicted control û

Fig. 1. Receding horizon strategy

An MPC controller is implemented by solving opti-
mization problems the result is then applied according
the receding horizon philosophy: At the instant k only
the first optimal control output û(k|k) is actually applied
to the plant. The remaining optimal control outputs are
discarded and a new optimal control problem is solved at
the instantk+1. This is illustrated in Fig. 1 and described
by Algorithm 1





minu·|k
J(k,Np, Nm, x(k), x̂·|k, û·|k)

subject to

x(k + 1) = Ax(k) +Bu(k)

“control and state constraints”

“stability constraints” .

(3)

In (3) by J(k,Np, Nm, x(k), x̂·|k, û·|k) is denoted a

cost function, x̂·|k and û·|k the sequences of the predicted

plant states and control outputs respectively were calcu-
lated at the time instants denoted as k after symbol | .

x̂·|k =
(
x̂(k + 1|k), x̂(k + 2|k), . . . , x̂(k +Np|k)

)
, (4a)

û·|k =
(
û(k|k), û(k + 1|k), . . . , û(k +Nm − 1|k)

)
. (4b)
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Np denotes the length of the prediction horizon and Nm

denotes the length of the control horizon (Nm ≤ Np ).
When Np = ∞ , we refer to this as the infinite horizon
problem, and similarly, when Np is finite as the finite
horizon problem [13].

The cost function J(k,Np, Nm, x(k), x̂·|k, û·|k) may

have different forms depending on the optimization prob-
lem type (linear programming, quadratic programming,
etc). Due to relative easy solution and availability of
solvers, a receding horizon is often implemented using
quadratic cost function of the form [13]

J(k,Np, Nm, x(k), x̂·|k, û·|k) = x̂T (k+Np|k)Q0x̂(k+Np|k)

+

Np−1∑

i=0

x̂T (k + i|k)Q x̂(k + i|k)

+

Nm−1∑

i=0

ûT (k + i|k)R û(k + i|k) . (5)

A basic MPC law is described by the following algorithm

Algorithm 1 – calculation of the basic MPC [3]

1. Get the new state x(k).

2. Solve the optimization problem (3).

3. Apply u(k) = û(k|k).

4. k ← k + 1. Go to 1.

2.2 Issues with model predictive control

2.2.1 Computational complexity

The computational complexity of the optimization
problem‘s (3) solver is often of great concern. It depends
on the internal workings of the solver, choice of the per-
formance index (linear, quadratic (5), . . . ), state space
and control outputs dimensions, lengths of the prediction
and control horizons, etc.

2.2.2 Feasibility

In [14] authors have shown the feasibility of the opti-
mal problem’s (3) solution at the initial time k = 0 does
not necessary imply feasibility for all future times. It is
desirable to design control strategy such that feasibility
for all future times is guaranteed, a property which is
called persistent feasibility.

Typically, feasibility is assumed at the time k = 0 and
cost function and stability constrains (3) are chosen such
that feasibility is preserved at the following time steps.
This is achieved, for instance, by ensuring that shifted
optimal sequence

(
û(k+1|k), û(k+2|k), . . . , û(k+Nm−

1|k), 0
)
is feasible at the time k + 1. Also typically the

constraints which impose restrictions on state variable in
the optimization problem (3) can be treated as soft by
adding a slack variable ǫ

G2(x̂·|k) ≤ g2 + ǫ




1
...
1





The control output constraints G1(û·|k) ≤ g1 are main-

tained as hard. Relaxing the state constraints removes
the feasibility problem at least for stable systems [13].
Keeping the state constraint hard does not make sense
from the practical point of view because of the presence
of the noise, disturbances and numerical errors. As the
control outputs are yielded by the optimization proce-
dure, control output constraints can always be regarded
as hard [13].

2.2.3 Stability

To guarantee stability of the closed-loop system, addi-
tional constraints may be added to the optimization prob-
lem (3). There are several approaches to do this: eg the
value V (k) = J(k,Np, Nm, x(k), x̂·|k, u

∗
·|k) obtained for

the minimizer u∗
·|k of the form (4b) is used at each sam-

ple time k as the result of the Lyapunov function, other
may include [13]:

End (terminal) constraint

Adds into (3) a stability constraint of the form [15]

x̂(k +Np|k) = 0 . (6)

Infinite prediction horizon

For asymptotically stable systems, no stability con-
straint is necessary when Np = +∞ [16, 17].

Terminal weighting matrix

When terminal matrix Q0 in (5) is chosen as the so-
lution of a Riccati inequality, stability can be guaranteed
without the addition of any stability constraints [18].

Invariant terminal set

By relaxing terminal constraint (6) into set member-
ship constraint

x̂(k +Np|k) ∈ Ω,

and introducing an LQ feedback gain FLQ .

û(k + i|k) = FLQx̂(k + i|k), ∀i ≥ Nm .

The set Ω is an invariant set (ie a set of states x(k)
which, once entered by the system, will be never left [14])
under LQ regulation and the constraints are met inside
Ω [19].

Contraction constraint

Instead of the terminal cost V (k) as a value of the
Lyapunov function, explicitly requires some special prop-
erty of the state x̂(k+ i|k). To ensure stability, this prop-
erty might be that some norm of the state decreases with
time [20]

||x̂(k + i|k)|| ≤ α||x(k)||, ∀i ∈
{
1, . . . , Np

}
.
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3 Event-driven model predictive control

In this section, the modified control method is pro-
posed. This method is aimed at reducing computational
complexity of an MPC method by exploiting preexistent
control signals and design parameters.

Result of the optimization process are sequence of con-
trol signals (4b) and a sequence of predicted state vari-
ables (4a)





minu·|k
J(k,Np, Nm, x(k), x̂·|k, û·|k)

subject to

x(k + 1) = Ax(k) +Bu(k) ,

G1ũ(·|k) ≤ g1 ,

G2x̃(·|k) ≤ g2 .

(7)

x̃(·|k) =




x̂(k + 1|k)
...

x̂(k +Np|k)


 , (8a)

ũ(·|k) =




û(k|k)
...

û(k +Nm − 1|k)


 . (8b)

In (7), J(k,Np, Nm, x(k), x̂·|k, û·|k) is a cost function,

such as (5), G1 , g1 and G2 , g2 are parameters which
specify the control and state constraints respectively,
x̃(·|k) and ũ(·|k) are vectors of predicted state (8a) and
control (8b) signals respectively.

From 2.1 it follows that, in standard MPC, the opti-
mization problem (7) is solved at each sampling periodk
and only the first control signal of the sequence (4b) is
used. The method proposed here is based on the assump-
tion that the control signals sequence (4b) can be uti-
lized throughout control horizon Nm in an open-loop
manner, provided the predicted state x̂(k + i|k) does
not divert from the measured state x(k + i) for all
i ∈ {1, 2, . . . , Nm − 1} . This assumption can be expected
to hold, as shown in (9), for limited number of sample pe-
riods l ∈ N , even in real-world scenarios, where bounded
unmeasurable disturbance or model inaccuracy is affect-
ing system behavior

∃ l ∈ {0, . . . , Nm − 1} ,
(
x̂(k + i|k)− x(k + i)

)
∈ ǫ0

∀i ∈ {0, . . . , l} , (9)

where ǫ0 ⊂ R
n represents subspace of the state space

which consists of the origin and its arbitrary small neigh-
borhood, x̂(k + i|k) ∈ R

n and x(k + i) ∈ R
n are current

state of the plant predicted at the time instant kand cur-
rent actual state of the plant respectively.

The proposed method can be used to trade between
precision of the control and the computational resources
needed by reducing the number of optimization problems
solved over some time horizon using (9) and

u(k + i) = û(k + i|k) ∀i ∈ {0, . . . , l} , (10)

where l refers to the variable defined in (9).

3.1 Predicted state divergence

Continuous-time LTI model eqrefeq:disturbed-linear-
continuous-plant reflects uncertainties in the model of a
real plant by introducing the disturbance into model‘s
dynamics.

ẋ′
c(t) = Acx

′
c(t) +Bcuc(t) +Wcwc(t) , (11)

where wc(t) ∈ R
q is a disturbance input and Wc ∈

R
n×q is a disturbance coupling matrix. In real world

the disturbed model properties wc(t) and Wcare usually
unmeasurable and unknown respectively and therefore do
not appear in the design model (12). The unawareness of
the precise model during the design is usually overcome
by implementing some robustness into applied control
method.

ẋc(t) = Acxc(t) +Bcuc(t) . (12)

By comparing continuous disturbed model (11) and
continuous design model (12) it is easy to see that the
respective state variables of these models might diverge
with time t ∈ (t0,∞), when x′

c(t0) = xc(t0), Wc 6= 0n×q

and ∃ t ∈ (t0,∞) so that wc(t) 6= 0q .This introduces
difference variable e(k + i|k) ∈ R

n defined by

e(k + i|k) = x(k + i)− x̂(k + i|k) ∀i ∈ {0, . . . , Nm − 1} .
(13)

When employing an MPC, where solution of the op-
timization problem is event-triggered [6], a predicted
state divergence can be calculated from predicted state
x̂(k + i|k) and an actual measured state x(k + i), where
k + i is current time instant and k is the time instant of
prediction calculation.

The proposed method for quantifying the state diver-
gence is a vector norm || · || : Rn×2 → R≥0 (14) of the dif-
ference between measured state and the state predicted
at the instant k , where x(k + i) ∈ R

n , x̂(k + i|k) ∈ R
n ,

k ∈ N and i ∈ N .

||e(k+i|k)|| = ||x(k+i)−x̂(k+i|k)|| ∀ i ∈
{
1, . . . , Nm−1

}
.

(14)

The difference norm can be implemented using the
preexistent parameters from the MPC cost function (5),
which yields quadratic cost of difference denoted by
Je : R

n×2 → R≥0 . This way the Q parameter from the
MPC quadratic cost function (5) is reused in a compelling
manner, removing the need for adding more design vari-
ables. Such norm of the difference is presented in (15)
which also handles the boundaries of the control hori-
zon Nm .

Je(x(k + i), x̂(k + i|k)) =






0 for i = 0 ,

eTQe for 0 < i < Nm ,

∞ for i ≥ Nm ,

(15)
where e ∈ R

n is short for e(k + i|k).
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3.2 Modified control approach

Since this method is based on an on-line optimal con-
trol strategy, it is essential to first design such control.
Proposed modified method is based on the MPC control
approach reviewed in section 2.1. The proposed approach
also introduces some new design concerns, first of which is
the question how to measure divergence of the predicted
state x̂(k + i|k) from the real measured state x(k + i).
This questions was tackled in section 3.1 and here the cost
of state difference Je(x(k + i), x̂(k + i|k)) (15) is used.

The second design concern is the threshold value of the
calculated difference norm. This value ||e||threshold ∈ R≥0

is positive real number or zero which limits the value of
the difference cost ||e|| (implemented in proposed method
by difference cost Je ).

Algorithm 2 Event-driven approach to
model predictive control

1. Obtain x(k)
2. loop
3. Solve the optimization problem (7)

and obtain sequences x̂·|k and û·|k (4)
4. i← 0
5. while Je(x(k + i), x̂(k + i|k)) ≤ ||e||threshold do

6. Apply u(k + i) = û(k + i|k)
7. i← i+ 1
8. Obtain x(k + i)
9. end while

10. k ← k + i

11.end loop

The Complete algorithmic description of the proposed
modified method is shown in Algorithm 2. On the lines 1
and 8 of Algorithm 2 the current state information x(k)
is obtained, which is done either by directly measuring
the state, when it is available, or by recovering it with
some of the state observing methods. The optimization
problem yielding the control signals is solved on line 3.
These control signals are used on the lines 5 to 9. On
line 5 the difference cost Je (15) is evaluated and control
signals are used only in case this value does not exceed
specified threshold ||e||threshold .

From Algorithm 2, it is evident that setting the thresh-
old value ||e||threshold above zero might lead to sparing
computational resources by reusing the existing control
signals inside the predicted control horizon Nm . This will
cause the most computationally demanding line of the Al-
gorithm 2 (line 3) to be executed less often. On the other
hand, by setting higher threshold value ||e||threshold , a
greater divergence from the predicted state is allowed.
This may result in lower accuracy of the control. There-
fore, it is possible to gather that changing the threshold
value ||e||threshold allows to trade between the accuracy
of the control and computational resources used by the
control algorithm.

It can be easily seen, that this method does not discard
stability, for ||e||threshold <∞ , in case the control method
on which it is built on (MPC) guarantees stability. This is

due to the fact, that the Je(x(k+ i), x̂(k+ i|k)) function
can generally be defined as a Lyapunov function, limit-
ing the amount of (generalized) energy of the difference
between predicted and actual state of the system.

In its core the method proposed here limits the value of
the quadratic form (16), defined by (15), to the maximum
of ||e||threshold

e(k + i|k)⊤Qe(k + i|k) . (16)

A contracted constraints need to be calculated which
when used by optimization algorithm (line 3 in Algo-
rithm 2) ensure state constraints, introduced by (7), are
being held.

A conservative approach to do such constraint con-
traction can be proposed using maximum divergence of
each state variable emax(Q, ||e||threshold) ∈ R

n allowed
by Q and ||e||threshold parameters. It is safe to assume
that matrix Q is positive definite, since quadratic form
(16) origins form cost function of MPC control law (5).
This fact can be exploited to obtain the maximum diver-
gence of each state variable emax . Form the geometrical
point of view, this means that (16) defines an ellipsoid in
R

n space and emax describes its axis-aligned minimum
bounding box. This bounding box can be obtained using
a method described in [21].

Conceivably this approach places upper bound limit
on the ||e||threshold value, since too big ||e||threshold would
render optimization problem in Algorithm 2 unfeasible for
all x(k) ∈ R

n .

4 Results

To present implications of the theory proposed in this
paper following subsections demonstrate its usage on a
simple model inside a simulated environment. The first
subsection shortly describes the transformation of a MPC
with quadratic cost function into a general quadratic op-
timization problem. Next a simulation model and its pa-
rameters are presented. Last subsection shortly summa-
rizes results of the simulated experiment.

4.1 Control Design

An MPC optimization problem (7) with quadratic cost
function is to be transformed here into general quadratic
programming optimization problem (17) as described in
[14]. This form is usually used by generic solvers of opti-
mization problems with a quadratic cost function.





minz
1
2z

⊤Hz + q⊤z + r

subject to

Giz ≤ wi ,

Gez = we .

(17)

The optimization problem (17) is a generic quadratic
optimization problem with both inequality constraints
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and equality constraints, where z ∈ R
s , H ∈ R

s×s is
a symmetric (H = H⊤ ) positive definite matrix, q ∈
R

s and r ∈ R . Constraints are comprised of inequality
constraints defined by Gi ∈ R

ni×s and wi ∈ R
ni and

equality constraints defined by Ge ∈ R
ne×s and we ∈

R
ne .

4.1.1 Cost function formulation

First the optimization vector z is derived as the con-
catenation of the optimization sequences (4a) and (4b)

z(k) =




x(k)
x̃(·|k)
ũ(·|k)


 . (18)

In (18) x̃(·|k) and ũ(·|k) are vectors of predicted states
and control output defined in (8a) and (8b) respectively.

Further, from (5) the MPC cost function can be de-
rived a quadratic cost matrix H . Easily can be seen that
neither linear (q ) nor constant (r ) component is present
in a MPC cost function (5).

By considering vector z defined as in (18), the matrix
H can be derived into form

H = Diag (Q, . . . , Q, Q0, R, . . . , R) , (19)

where the counts of Q and R matrices are equal to the
lengths of the prediction horizon Np and control horizon
Nm respectively.

4.1.2 Constraints formulation

Inequality constraints comprised of a matrix Gi and a
vector wi are easily acquired from the limitations acting
upon state variables and control signals of the system
which will be presented along the model of the plant in
section 4.2.

In an MPC optimization problem (7) the only equality
constraints are formed by the system dynamics equation
(2). To obtain the matrix Ge and the vector we , first
an augmented system dynamics equation (20) is to be
derived

x̃(·|k) = Ãx(k) + B̃ũ(·|k) , (20)

where

Ã =




A

A2

...
ANp


 , (21)

B̃ =




B 0n×m . . . 0n×m

AB B . . . 0n×m

...
...

. . .
...

ANm−1B ANm−2B . . . B
...

...
. . .

...
ANp−1B ANp−2B . . .

∑Np

i=Nm
ANp−iB




.

(22)

Using the matrices Ã and B̃ , the equality constraints are

defined as

Ge =

[
In×n 0n×(n·Np) 0n×(m·Nm)

Ã −I(n·Np)×(n·Np) B̃

]
,

we(k) =

[
x(k)

0(n·Np)×1

]
.

(23)

4.2 Model

Model used to present the theory (Fig. 2), representing

a generalized mechanical suspension, consists of several

masses mi interconnected by combination of springs and

dampers. Each such mass can be described by differential
equations

ẋc,i1 =xc,i2 ,

ẋc,i2 =
1

mi

∑

j∈Ni

[
− ki,j

(
xc,i1 − xc,j1

)
−

bi,j
(
xc,i2 − xc,j2

)]
+

100uc,i1

mi

,

ẋc,i3 =xc,i4 ,

ẋc,i4 =
1

mi

∑

j∈Ni

[
− ki,j

(
xc,i3 − xc,j3

)
−

bi,j
(
xc,i4 − xc,j4

)]
+

100uc,i2

mi

,

(24)

where i ∈ M ⊂ Z>0 is an index of the mass, mi is a

weight of a mass, ki,j = kj,i and bi,j = bj,i are a spring

constant and a damping ration respectively between mass
i and mass j , xc,i1 and xc,i3 are vertical and horizon-

tal displacement from the equilibrium respectively, xc,i2

and xc,i4 are the vertical and horizontal velocities respec-

tively, 100uc,i1 and 100uc,i2 are the vertical and horizon-
tal forces respectively applied to mass i , Ni ⊂ M is a

set of masses interconnected with the mass i .

mj1

mj2mj4

mj3

mi

k
i,j2

b
i,j2

k
i,j4

b
i,j4

k
i,j1

k
i,j3

b
i,j1

b
i,j3

Fig. 2. Mechanical system
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Fig. 3. Displacement state variables, Velocity state variables, Evolution of the mechanical system controlled by MPC
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Fig. 4. Displacement state variables, Velocity state variables, Evolution of the mechanical system controlled by MPC

To achieve reasonably realistic results, state variables
and inputs of each subsystem, composed by a single mass,
are constrained. These constraints are shown in Table 1
and apply to all masses.

Table 1. Constraints of the plant

Variable Maximum absolute value
xc,i1 1.5m

xc,i2 0.8ms−1

xc,i3 1.5m

xc,i4 0.8ms−1

100uc,i1 125N

100uc,i2 125N

Overall model of the designed system (11) consists
of 3 × 4 interconnected masses. Initially, the masses are
randomly displaced from their respective equilibria inside

the subspace of the state-space defined by constraints
shown in Table 1. Also a disturbance signal wc(t) ∈ R

q

is acting upon the model in random time instants.

In order to properly exploit the knowledge of the phys-
ical properties of the designed mechanical system the
weight matrix Q in the MPC cost function (5) can be
designed to reflect the total energy of the system, as il-
lustrated by

Q = Diag

(
∑

V

ki,j ,mi,
∑

H

ki,j ,mi, . . .

)
, (25)

where
∑

V ki,j and
∑

H ki,j are sums of constants of
springs attached to the mass i in vertical respectively
in horizontal direction.

5 Discussion

After construction and discretization of the model de-
scribed above, two control strategies were designed: a
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classical MPC approach and the method outlined in this

paper.

The results of the simulated control of the model by

MPC are shown in Fig. 3, which displays displacement

and velocity evolution of the model. The same state evo-

lutions of the simulated system controlled by the method

proposed in this paper are shown in Fig. 4. For the latter

of the simulations, also an evolution of the difference cost

Je (15) is shown in Fig. 5. Mentioned figures clearly show

that both control strategies successfully steer the system

into origin of its state-space, effectively achieving the goal

of the control set by the cost function (5).

The first simulation, resulting in state evolutions

shown in Fig. 3, exemplifies MPC method applied on

the model described in section 4.2. The second simula-

tion, presented by Figs. 4 and 5, is done on the same

model with the same initial conditions x(0) and same

noise signal w(k) acting upon it as the first simulation.

The difference is the control strategy, which is the method

proposed in this paper.

The main aim of the proposed approach is to reduce

computational expensiveness of the MPC. Presented sim-

ulations suggest that this goal is met, since the first ap-

proach runs the optimization problem solver (3) once per

each sampling period, ie 90 times during the presented

simulation. From Fig. 5 it is obvious that the modified

approach executes the same optimization problem solver

only 7 times (including the first run at time 0).

On the other hand, by comparing state evolutions of

the system controlled by MPC and by the method pro-

posed in this paper it is apparent that the latter shows no-

ticeable deviations from the optimal trajectory presented

by the former. This are caused by non-zero threshold

Jthreshold (see line 5 in Algorithm 2. This results seem

to confirm the proposition that Jthreshold can be used to

trade between precision of the control and computational

resources need by the control algorithm.

6 Conclusion

This paper provides, in its first part, a brief review
of MPC approach to controlling dynamic systems and
continues by proposing new method aiming at minimiz-
ing the computational resources needed by this control
method while reasonably and in a bounded way reducing
the precision of the control. Experimental simulated re-
sults are presented in the second part of this paper. As
mentioned in section 5, this section describes and pro-
vides comparison of two simulated scenarios done using a
model described therein. First scenario presents the stan-
dard MPC and second simulation shows behavior of the
method proposed in this paper. The comparison clearly
shows the reduced usage of the computation resources
by reducing the number of optimization problems solved
over simulated time period.
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